	Program Description                                                                                        PD 5.0



	Name
	SEIFE

	Author
	Erhard Wielandt, retired from Institute of Geophysics, University of Stuttgart, Azenbergstrasse 16, D - 70174 Stuttgart, E-mail: e.wielandt@t-online.de

	Version
	2011


SEIFE is a tool for general time-domain data processing: windowing, filtration, polynomial fitting, interpolation, determining peak and rms values, etc. It is also useful for converting different ASCII data formats into the SEIFE ASCII format that is understood by my other programs. SEIFE works in time domain only and does not include any form of spectral analysis.

In order to use SEIFE (and most of my other programs) under MS-DOS or WINDOWS you need:

· a DOS-executable of the program

· the FORTRAN libraries f90io.dll, libf90.dll and sysf90.dll (300 kByte)

· a parameter file named seife.par by default, which tells SEIFE what to do. (For CALEX the default name of the parameter file is calex.par, etc.) SEIFE and some other programs also accept different names for the parameter file when these are entered as a runstring. 

· a data file or several data files in any of a number of ASCII formats. SEIFE applies the same processing to all data files.

· It is recommended to use the WINPLOT executable for plotting the output signals. WINPLOT is written in GFA-Basic 32 and requires the Gfawin16.Ocx library (900 kByte) and a parameter file named winplot.par, which is automatically generated by SEIFE.

To run my programs under WINDOWS, first open a DOS window. Programs will also run when their icons in a WINDOWS folder are double-clicked but then the screen output is lost, and you cannot enter runstring parameters. Under LINUX or equivalent you must yourself compile the FORTRAN source code. Some compilers may require minor editing of the source. 

To obtain an overview of what SEIFE can do type ‘seife info’. SEIFE then prints out the header lines of its own source code (similar to HELP in MATLAB), provided that the source is in the working directory. The same information is given below.

The parameter file

SEIFE is not interactive. You must prepare a little file (kind of a script) with the default name seife.par that contains file names and processing commands. This has the advantage that you automatically document what you do, and can automatically process additional files in exactly the same way. SEIFE also writes the processing commands into the header of the output file if desired, so each output file keeps track of how it was generated. Before discussing details, here is a simple example for a seife.par file:

fil sig1 sig1.flt

fil sig2 sig2.flt

bp2 0.93 0.788

fac 10000.

ssq 1000

end (6f10.3)

These commands tell SEIFE to process two files, sig1 and sig2, and write the results into sig1.flt resp. sig2.flt. The signals are bandpass filtered (bp2), multiplied by 10000 (fac) and tapered at both ends with a sine-squared resp. cosine-squared taper (ssq) over 1000 samples. The ‘end’ line specifies the output format. Input and output files may be identical..

The first three characters in each line define the command; they must be in lower case. The command is followed by up to four parameters (in one case, six). Lines beginning with a blank are ignored, so commands can easily be inactivated without removing them. Commands may be classified into the following groups:

· commands supplying the names and formats of input files, and the names of output files: fil, asc, mar, asl, bdf. The output format can be set in the end command .

· commands setting paths (pfi, pfo) and a variety of other parameters (ncl – no comment lines; npw – no prewarp, plw – size of WINPLOT window, etc.)

· commands defining a filter, a time window, or other processing tools: lim, add, clp, ssq, csi, dec, dif, dis, exp, fac, int, lin, nor, nop, nox, nul, pad, pol, res, rev, sin, sis, skp, spl, sqr, srt, zsp, tap, tid, tr3, tr6, tre, twi, swi, win, lp1, hp1, le1, he1, lp2, hp2, bp2, le2, he2, lpb, hpb, sez . Please consult ‘seife info’ or the list beginning on page 4 of this description for details.

· commands producing only screen output or comments: com, rem, ext, rms

· the end command, where a number of ASCII output formats may be specified. If none is specified, SEIFE will automatically determine a suitable format.

All input files (up to 32) are processed with the same commands, so you cannot specify different commands for different files in the same run. 

The input files may contain a time stamp (see below) that is updated when a time window is applied, and transferred to the output file. The command ‘tim’ sets the time stamp. 

SEIFE also writes a plot-parameter file ‘winplot.par’ for the plot program ‘WINPLOT’ so that by simply calling ‘winplot’ from a command line, or double-clicking its icon, up to 12 output signals from SEIFE can be plotted. (This also works for some of my other programs - just try.) You may edit the winplot.par file in order to resize the plot or to plot only part of the data (see the program description of WINPLOT). The plot size can also be set with the ‘plt’ command in the seife.par file; SEIFE then passes these parameters to the winplot.par file. There are options to plot both input and output signals, and to generate a configuration file for plotting with LABVIEW in place of WINPLOT.

Input and output formats

SEIFE can read data in a number of known ASCII formats but writes the processed signals in a specific ASCII format called the SEIFE format. It was defined prior to most other presently known  formats and I am still adhering to it although it may now be obsolete. My other processing and plotting programs use the same data format. The SEIFE format differs from other ASCII formats mainly in the syntax of the data header, which can include a protocol of all processing steps. The data themselves can easily be read with other software when the header is edited or deleted. SEIFE can also write pure ASCII data without a header.

SEIFE does not automatically recognize the format of the input file. Rather, different commands are used to read different file types. 

The SEIFE data format

The structure of the data files is as follows:

· one header line, arbitrary (will be echoed but not evaluated)

· up to 48 comment or protocol lines marked with a  % character in the first column. 

      Protocol lines are automatically generated by SEIFE unless seife.par contains the 

      code ‘ncl’ (no comment lines).

· one line containing the number of samples, the FORTRAN format in which they are listed, the sampling interval, and an optional time stamp as described below. This is the last header line.

· data in the specified ASCII format (here 5f10.3, that is, five entries like __-123.456 per line; the underscores represent blanks). 

The entries in the last header line (which is the second line if there are no comments)  must be in the FORTRAN format (i10,a20,f10.x). ( Don’t get confused: the Fortran format is specified, together with other parameters, in a line written in another Fortran format! The same line may also contain a time stamp, in which case the format is (i10,a20,3f10.x). The time stamp consists of two numbers: minutes and seconds after midnight. No date can be encoded, except by expressing it in minutes. The whole line might read:         
12000     (5f10.3)            0.01      617.      23.45

The strings begin at positions 1, 11, 31, 41, 51. The time of the first sample is 10:17:23.45.

When the data file is in SEIFE format, then the command to read it must begin with the format code ‘fil’ (see below for a complete command line). The program then expects to find a FORTRAN floating-point format specification in the data file. Other ASCII data should be read with the ‘asc’ format code, or (faster) with ‘sca’ when the data form a single column. Another option is to edit a SEIFE style header (two lines) into the data file and specify an asterisk ‘*’ or an ‘i’ in place of the FORTRAN f-format specification. The data are then read in free format and may be floating-point or integer. WINPLOT and some other programs will however not be able to read such free-format files. 

Other input formats
A number of other ASCII data formats can be read with the asc, asl, bdf, mar, and psn commands as explained below. MINISEED files cannot be read directly but can be converted into ASL format with Quanterra’s free CIMARRON software, and then read with SEIFE. A converter from GSE to ASCII format named CODECO written by Urs Kradolfer is available. 

asc  infile  outfile  dt  nskip: reads data in general ASCII format.  The sampling interval, dt,

      and the number of header lines to be skipped, nskip, must be specified after the file names. 

      SEIFE does in this case not decode the header lines. Data are read in free format; the

      number of samples per line may vary.

sca: same use as asc but reads only a single column of data. Is much faster than asc.

psn infile outfile: reads PSN text files from WINQUAKE (Larry Cochrane), decodes the 

      header as far as necessary.

asl  infile  outfile: reads data in ASL (Peterson) ASCII format. SEIFE decodes the header line.

bdf  infile  outfile: another ASCII format used at ASL, with data blocks interspersed with 

       headers. Seife decodes only the first header and ignores all others, which are redundant. 

mar  infile  outfile: reads data from MARSDUMP (Lennartz). Header lines are decoded 

        as far as necessary.

Other output formats

The output file can be written in SEIFE, GNUPLOT, or headerless single-column ASCII format. The format is specified after the ‚end’ keyword. If a FORTRAN e- or f- format is specified (e.g.  ‘end (6f12.3) ’, data will be written in that format. If ‘end free’ is specified or the format is omitted, SEIFE will automatically select a suitable format. end asc  writes data in headerless one-column ASCII, ‘end gnu’ writes data in headerless two-column ASCII where the first column is time in seconds and the second column is data. This format is convenient for plotting data with GNUPLOT or MATLAB. There is also the option ‘end lab’ that produces LABVIEW compatible output and in addition a configuration file for LABVIEW in place of the ‘winplot.par’ file. The keywords must be given in lower case. 

Processing commands:

Time windows, tapers, skipping or shifting data, padding:

All tapers and windows have a peak amplitude of 1 and do not compensate for lost signal energy.

lim  n: limit the length of the input series to n samples 
pad  n: pad with zeros to length n (must be larger that the original  length)

shl   n: shift signal left by n samples, fill empty interval with zeros

shr   n: shift signal right by n samples, fill empty interval with zeros

skp  n: skip n samples, sample n+1 becomes first, series becomes shorter

sin  n1  n2: tapered window from n1 to n2 with sine weight 

sis  n1  n2: the same, with a squared-sine weight
swi  s1 s2: box window defined by seconds after first sample

tap  n1: signal is tapered on between samples 1 and n1, and tapered off between

             samples n-n1+1 and n with a cosine-squared taper and amplitude correction

twi  tmin1 tsec1 tmin2 tsec2: specify a window in minutes and seconds relative to the time

       stamp of the data. A day can only be specified by converting it into 1440 minutes.

win  n 1  n2: window from sample n1 to n2 (n1 becomes first sample)

Differentiation, integration, frequency filtration

All corners of the response are entered as periods (in seconds), not as frequencies. Recursive (IIR) filters are designed with the usual bilinear transformation. The frequency scale is prewarped by default but this can be suppressed with npw. Prewarping corrects the eigenfrequency of resonant filters but does not remove other deviations from the equivalent analog filter. To improve the overall accuracy, use higher sampling rates.

dif  differentiate the signal using (x(i+1)-x(i-1)/2./dt                  
int  integrate the signal

lp1, hp1, le1, he1, lp2, hp2, bp2, le2, he2, lpb, hpb,  sez: recursive (IIR) filters:

   filters are specified by a three-character code for the type and 1 to 4 parameters.                           

   lp = low pass, hp = high pass, bp = band pass. 1 or 2: order (number of poles)                      

      parameters: corner period [,damping if second-order] 

      example: lp2 30. 0.5 is a low pass with a 30 s corner and 0.5 of critical damping           

   le = nearly-inverse low pass, he = nearly-inverse high pass (equalizer), order 1 or 2          

      parameters: old corner period, [old damping], new corner period, [new damping]

      example: he2 1. 0.6 30. 0.707 converts a short-period into a long-period seismometer   

   lpb, hpb Butterworth low-pass and high-pass filters

      parameters: corner period, order (number of poles)                     

      example: lpb 30. 6 is a 30 sec, sixth-order Butterworth low-pass filter.

   npw: don’t prewarp the frequency scale (applies to all recursive filters)

   sez t0 h: inverse second-order high-pass filter. This filter completely removes a 

      seismometer response with free period t0 and damping h. The trace must be carefully 

      detrended before inverse filtration. The output signal is likely to have a quadratic 

      trend that can be removed with ‘pol’.       

Trend and Tide removal

avg  n: remove the average of the first n samples from the whole series   

        n = 0 means: determine the average from all samples.                   

exp  n: remove a decaying exponential trend determined from first n samples          

lin    remove the linear trend corresponding to a straight line through first and last sample   

pol   n: remove a polynomial trend of degree n (up to n = 7)                             

zsp  n1 n2 n3 n4  detrend with a z-spline with corners n1 .. n4 (three straight segments)         

tid   n: remove tides. For computational efficiency, coefficients are determined from a series

       decimated by a factor n (now obsolete). For n = 0 we use one sample per 5

       minutes. The output signal is not decimated.

tre  n: remove the linear trend as determined from the first n samples; n = 0: all samples                          

tr3  n1 t0 h: fit and remove remove transient with t0 and h starting at sample n1                              

tr6  n1 t0 h f1 f2 f3: remove transient using coefficients determined (and listed) by tr3 (possibly from a different signal)                            

Resampling, splitting and joining data files

chp  n: chop signal into sections of n samples for output. File names are constructed

   by appending .00, .01 etc. to the name of the output file (maximum 24 files).      

dec  n: decimate to every n'th sample. An anti-alias filter is automatically applied.                                     
Files can be joined by specifying nam2 = '_join_' in the ‘fil’ command. This will append 

   the next output file to the present one, and store the accumulated output whenever a 

   name other than '_join_' is given to the output file. (May not be safe to use. Do not 

   make more than one joined file or apply other processing at the same time.) 

Measuring and normalizing amplitudes

Note: a time window for ext and rms can be specified with plw.

ext:  find extremal samples (signal is unchanged; screen output only)                     

nor  a: normalize rms amplitude to a                                          

nop  a: normalize peak amplitude to a (or negative peak to –a)                                    

nox  a: normalize extrema to +-a (the zero line is adjusteded accordingly)

rms:  determine rms amplitude (signal is unchanged; screen output only)                        

Distortion, clipping, interpolation
abs: replace each sample by its absolute value

clp  c: clip signal at level c

dis  n a: add nonlineqar distortion: x <== x + a*xmax*(x/xmax)**n, resp. +a*abs(x) for n=1 

qnt  a: quantise to multiples of a,   x <== a*anint(x/a)  

sig: replace each sample by 1 or –1 according to its sign (0 may remain 0)                                    
spl  c n1 n2 apex:  interpolate clipped samples (value >= c) with a cubic spline from sample 

     n1 to n2. The spline is fitted through samples n1-2, n1-1, n2+1 and n2+2, which makes 

     sense only if the slope of the desired signal is reasonably well determined by these

     samples. c=0 is replaced by 95% of the absolutely largest sample. If apex is specified 

     other than zero, interpolation is done with a parabola with a specified height of  apex.  

sqr:  square each sample

Plotting

SEIFE does not plot  but can generate plot-parameter (configuration) files for WINPLOT and LABVIEW. The latter format can be chosen in the end command. See “other output formats”.

cfi  set a path for the labview configuration file 

npl: don’t produce a plot-parameter file (so an existing file is kept)

pli  set up the plot-parameter file so that both input and output files are plotted. (Default is 

      output files only.) Works only for SEIFE format input, and up to six input signals.

plt  w  h: specify width w and height h of the plot in the plot-parameter file.

plw n1 n2: specify a time window for ext, rms, and plotting (this is useful for evaluating amplitudes in a given time window, for example in a two-tone test).                                    

Output

chp  n: see ‘Resampling, splitting and joining data files’ above
end asc, end gnu, end lab: see ‘other output formats’

ncl: suppress protocol lines in the output 

pfi  set a directory path for the input files

pfo set a directory path for the output files

sav: save intermediate result under a name derived from that of the output file. Does not work

        when the command chp or more than one input signal is present in the parameter file.

See also ‘Plotting’

Miscellaneous

<space> as the first character of a line: ignore this line

add  a: add a to each sample 

com Comment

fac  f: multiply each sample by f 

nul  n1  n2: nulls the signal between samples n1 and n2 (inclusive)    

rem Comment

rev:  reverse the signal (useful for zero-phase filtration: filter-reverse-filter-reverse)
srt:  heap-sort the data 

Download

Download source code, executable, and test data from

http://www.software-for-seismometry.de/
1
3

