Magnetic field background variations can limit the sensitivity of seismic broad-band sensors

T. Forbriger¹, R. Widmer-Schnidrig¹, E. Wielandt², M. Hayman³, and N. Ackerley³

- ¹ Black Forest Observatory (BFO)
- ² Institute for Geophysics, Universität Stuttgart
- ³ Nanometrics Inc., Ontario, Canada
- 33. Sitzung der Arbeitsgruppe Seismologie 26.9. 28.9.2007, Berggießhübel

▶ ▲문▶ ▲문▶ 문법

Response of the GSN to a magnetic storm

Signal power at 228 s period for stations of the Global Seismographic Network (GSN)

Courtesy of Göran Ekström (Signal Power at Digital Broadband Stations Derived from Near Real Time Data, LDEO Seismology Research: Seismic Noise) http://www.ldeo.columbia.edu/~ekstrom /Research/Noise/RADB_hourly_rms.html

Removing magnetic field noise from seismic recordings

velocity seismograms (100 s - 360 s)

Two Trillium T240 and one STS-2 in a huddle test at BFO

T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley

Limitation of sensitivity due to magnetic field variations

2 1 × 0 0 0

A E
A E
A

Sensitivity of vertical component to magnetic field

Trillium seismometers in the huddle test

Seismometer	$s_E(\frac{m}{Ts^2})$	$s_N(rac{m}{Ts^2})$	$s_{Z}(\frac{m}{Ts^{2}})$	$ \vec{S} (\tfrac{m}{Ts^2})$
T240 A	0.0633	0.0186	1.4840	1.485
T240 B	0.0890	-0.1409	1.3116	1.322

・ロト ・ 同ト ・ ヨト ・ ヨ

Sensitivity of vertical component to magnetic field

GRSN seismometers relative to magnetic field at BFO

Seismometer	$s_E(\frac{m}{Ts^2})$	$s_N(\frac{m}{Ts^2})$	$s_Z(\frac{m}{Ts^2})$	$ \vec{S} (\tfrac{m}{Ts^2})$
T240 A	0.0633	0.0186	1.4840	1.485
T240 B	0.0890	-0.1409	1.3116	1.322
Station	$s_X(\frac{m}{Ts^2})$	$s_{Y}(\frac{m}{Ts^{2}})$	$s_Z(\frac{m}{Ts^2})$	$ \vec{S} (\tfrac{m}{Ts^2})$
BFO (STS-1)	0.0035	0.0008	-0.0693	0.069
BFO (STS-2)	0.0242	0.0020	-0.0697	0.074
BRG (STS-2)	0.0155	0.0563	-0.0334	0.067
BUG (STS-2)	-0.1036	-0.0771	0.4533	0.49
CLL (STS-2)	-0.0072	-0.0283	0.0414	0.051
CLZ (STS-2)	0.0981	-0.2172	1.2001	1.2
FUR (STS-2)	0.1652	-0.0003	0.3676	0.40
MOX (STS-2)	-0.0418	-0.0695	-0.0598	0.11
TNS (STS-2)	0.1712	-0.1220	-0.1083	0.31

Magnetic field recordings (periods > 50 s)

Power spectral density

Expected contribution to seismometer noise

Expected contribution to seismometer noise

Expected contribution to seismometer noise

Simultaneous correction for air pressure and magnetic field

Recordings (band-pass: 100 s - 3 h)

T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley Li

Limitation of sensitivity due to magnetic field variations

Simultaneous correction for air pressure and magnetic field

Effect of corrections

Simultaneous correction for air pressure and magnetic field

Potential contributions to recorded signal

Conclusions

- Noise induced by the magnetic field background variations can exceed the NLNM in the normal-mode band (between 0.5 mHz and 3 mHz) for instruments with sensitivity larger than 0.2 m/(Tref).
- It is crucial to find appropriate means to ensure a low sensitivity to magnetic fields when designing and installing high-sensitive broad-band seismometers for the observation of normal modes.
- The ineffectiveness of air-pressure corrections for the STS-1 at BFO cannot be explained by magnetic field induced noise.

Acknowledgements

- Sven Stäbler (IGM, Überlingen) established the contact between BFO and Nanometrics and supported two huddle-test campaigns.
- We are grateful to Walter Zürn for his support and many fruitful discussions.
- Peter Duffner contributed to the huddle-tests at BFO.

A A B A A B A B B B A A A

Noise power after correction

